Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circ Res ; 131(1): 91-105, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35574856

RESUMEN

BACKGROUND: Cellular redox control is maintained by generation of reactive oxygen/nitrogen species balanced by activation of antioxidative pathways. Disruption of redox balance leads to oxidative stress, a central causative event in numerous diseases including heart failure. Redox control in the heart exposed to hemodynamic stress, however, remains to be fully elucidated. METHODS: Pressure overload was triggered by transverse aortic constriction in mice. Transcriptomic and metabolomic regulations were evaluated by RNA-sequencing and metabolomics, respectively. Stable isotope tracer labeling experiments were conducted to determine metabolic flux in vitro. Neonatal rat ventricular myocytes and H9c2 cells were used to examine molecular mechanisms. RESULTS: We show that production of cardiomyocyte NADPH, a key factor in redox regulation, is decreased in pressure overload-induced heart failure. As a consequence, the level of reduced glutathione is downregulated, a change associated with fibrosis and cardiomyopathy. We report that the pentose phosphate pathway and mitochondrial serine/glycine/folate metabolic signaling, 2 NADPH-generating pathways in the cytosol and mitochondria, respectively, are induced by transverse aortic constriction. We identify ATF4 (activating transcription factor 4) as an upstream transcription factor controlling the expression of multiple enzymes in these 2 pathways. Consistently, joint pathway analysis of transcriptomic and metabolomic data reveal that ATF4 preferably controls oxidative stress and redox-related pathways. Overexpression of ATF4 in neonatal rat ventricular myocytes increases NADPH-producing enzymes' whereas silencing of ATF4 decreases their expression. Further, stable isotope tracer experiments reveal that ATF4 overexpression augments metabolic flux within these 2 pathways. In vivo, cardiomyocyte-specific deletion of ATF4 exacerbates cardiomyopathy in the setting of transverse aortic constriction and accelerates heart failure development, attributable, at least in part, to an inability to increase the expression of NADPH-generating enzymes. CONCLUSIONS: Our findings reveal that ATF4 plays a critical role in the heart under conditions of hemodynamic stress by governing both cytosolic and mitochondrial production of NADPH.


Asunto(s)
Insuficiencia Cardíaca , Estrés Oxidativo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Insuficiencia Cardíaca/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , NADP/metabolismo , Estrés Oxidativo/fisiología , Ratas , Especies Reactivas de Oxígeno/metabolismo
2.
Cell Death Differ ; 29(4): 750-757, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34743204

RESUMEN

Ischemic disease is among the deadliest and most disabling illnesses. Prominent examples include myocardial infarction and stroke. Most, if not all, underlying pathological changes, including oxidative stress, inflammation, and nutrient deprivation, are potent inducers of the integrated stress response (ISR). Four upstream kinases are involved in ISR signaling that sense a myriad of input stress signals and converge on the phosphorylation of serine 51 of eukaryotic translation initiation factor 2α (eIF2α). As a result, translation initiation is halted, creating a window of opportunity for the cell to repair itself and restore homeostasis. A growing number of studies show strong induction of the ISR in ischemic disease. Genetic and pharmacological evidence suggests that the ISR plays critical roles in disease initiation and progression. Here, we review the basic regulation of the ISR, particularly in response to ischemia, and summarize recent findings relevant to the actions of the ISR in ischemic disease. We then discuss therapeutic opportunities by modulating the ISR to treat ischemic heart disease, brain ischemia, ischemic liver disease, and ischemic kidney disease. Finally, we propose that the ISR represents a promising therapeutic target for alleviating symptoms of ischemic disease and improving clinical outcomes.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Estrés Fisiológico , Factor 2 Eucariótico de Iniciación/metabolismo , Homeostasis , Humanos , Isquemia , Fosforilación
3.
Cell Signal ; 87: 110134, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34454008

RESUMEN

Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.


Asunto(s)
Calcineurina , Factores de Transcripción NFATC , Calcineurina/metabolismo , Cardiomegalia/patología , Amigos , Humanos , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/metabolismo , Transducción de Señal/fisiología
4.
Cell Death Dis ; 12(7): 657, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183648

RESUMEN

Subcellular organelles communicate with each other to regulate function and coordinate responses to changing cellular conditions. The physical-functional coupling of the endoplasmic reticulum (ER) with mitochondria allows for the direct transfer of Ca2+ between organelles and is an important avenue for rapidly increasing mitochondrial metabolic activity. As such, increasing ER-mitochondrial coupling can boost the generation of ATP that is needed to restore homeostasis in the face of cellular stress. The mitochondrial unfolded protein response (mtUPR) is activated by the accumulation of unfolded proteins in mitochondria. Retrograde signaling from mitochondria to the nucleus promotes mtUPR transcriptional responses aimed at restoring protein homeostasis. It is currently unknown whether the changes in mitochondrial-ER coupling also play a role during mtUPR stress. We hypothesized that mitochondrial stress favors an expansion of functional contacts between mitochondria and ER, thereby increasing mitochondrial metabolism as part of a protective response. Hela cells were treated with doxycycline, an antibiotic that inhibits the translation of mitochondrial-encoded proteins to create protein disequilibrium. Treatment with doxycycline decreased the abundance of mitochondrial encoded proteins while increasing expression of CHOP, C/EBPß, ClpP, and mtHsp60, markers of the mtUPR. There was no change in either mitophagic activity or cell viability. Furthermore, ER UPR was not activated, suggesting focused activation of the mtUPR. Within 2 h of doxycycline treatment, there was a significant increase in physical contacts between mitochondria and ER that was distributed throughout the cell, along with an increase in the kinetics of mitochondrial Ca2+ uptake. This was followed by the rise in the rate of oxygen consumption at 4 h, indicating a boost in mitochondrial metabolic activity. In conclusion, an early phase of the response to doxycycline-induced mitochondrial stress is an increase in mitochondrial-ER coupling that potentiates mitochondrial metabolic activity as a means to support subsequent steps in the mtUPR pathway and sustain cellular adaptation.


Asunto(s)
Antibacterianos/farmacología , Doxiciclina/farmacología , Retículo Endoplásmico/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Femenino , Células HeLa , Humanos , Cinética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Consumo de Oxígeno/efectos de los fármacos
5.
Circulation ; 144(1): 34-51, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33821668

RESUMEN

BACKGROUND: Cardiac hypertrophy is an independent risk factor for heart failure, a leading cause of morbidity and mortality globally. The calcineurin/NFAT (nuclear factor of activated T cells) pathway and the MAPK (mitogen-activated protein kinase)/Erk (extracellular signal-regulated kinase) pathway contribute to the pathogenesis of cardiac hypertrophy as an interdependent network of signaling cascades. How these pathways interact remains unclear and few direct targets responsible for the prohypertrophic role of NFAT have been described. METHODS: By engineering cardiomyocyte-specific ETS2 (a member of the E26 transformation-specific sequence [ETS] domain family) knockout mice, we investigated the role of ETS2 in cardiac hypertrophy. Primary cardiomyocytes were used to evaluate ETS2 function in cell growth. RESULTS: ETS2 is phosphorylated and activated by Erk1/2 on hypertrophic stimulation in both mouse (n=3) and human heart samples (n=8 to 19). Conditional deletion of ETS2 in mouse cardiomyocytes protects against pressure overload-induced cardiac hypertrophy (n=6 to 11). Silencing of ETS2 in the hearts of calcineurin transgenic mice significantly attenuates hypertrophic growth and contractile dysfunction (n=8). As a transcription factor, ETS2 is capable of binding to the promoters of hypertrophic marker genes, such as ANP, BNP, and Rcan1.4 (n=4). We report that ETS2 forms a complex with NFAT to stimulate transcriptional activity through increased NFAT binding to the promoters of at least 2 hypertrophy-stimulated genes: Rcan1.4 and microRNA-223 (=n4 to 6). Suppression of microRNA-223 in cardiomyocytes inhibits calcineurin-mediated cardiac hypertrophy (n=6), revealing microRNA-223 as a novel prohypertrophic target of the calcineurin/NFAT and Erk1/2-ETS2 pathways. CONCLUSIONS: Our findings point to a critical role for ETS2 in calcineurin/NFAT pathway-driven cardiac hypertrophy and unveil a previously unknown molecular connection between the Erk1/2 activation of ETS2 and expression of NFAT/ETS2 target genes.


Asunto(s)
Calcineurina/metabolismo , Cardiomegalia/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Factores de Transcripción NFATC/metabolismo , Proteína Proto-Oncogénica c-ets-2/metabolismo , Animales , Calcineurina/genética , Cardiomegalia/genética , Cardiomegalia/patología , Células Cultivadas , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Factores de Transcripción NFATC/genética , Unión Proteica/fisiología , Proteína Proto-Oncogénica c-ets-2/genética , Ratas , Ratas Sprague-Dawley
6.
Nature ; 582(7811): 271-276, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499640

RESUMEN

A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes1,2 and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest3. Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 double-knockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin immunoprecipitation with sequencing demonstrates that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and cell cycle. Finally, we show that the calcium-activated protein phosphatase calcineurin dephosphorylates Hoxb13 at serine-204, resulting in its nuclear localization and cell cycle arrest. These results demonstrate that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and proliferation and provide mechanistic insights into the link between hyperplastic and hypertrophic growth of cardiomyocytes.


Asunto(s)
Calcineurina/metabolismo , Proliferación Celular , Proteínas de Homeodominio/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Miocitos Cardíacos/citología , Animales , Animales Recién Nacidos , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Corazón/fisiología , Proteínas de Homeodominio/genética , Masculino , Ratones , Miocardio/citología , Unión Proteica , Regeneración
7.
Nat Commun ; 11(1): 2551, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439985

RESUMEN

Forkhead box O (FoxO) proteins and thyroid hormone (TH) have well established roles in cardiovascular morphogenesis and remodeling. However, specific role(s) of individual FoxO family members in stress-induced growth and remodeling of cardiomyocytes remains unknown. Here, we report that FoxO1, but not FoxO3, activity is essential for reciprocal regulation of types II and III iodothyronine deiodinases (Dio2 and Dio3, respectively), key enzymes involved in intracellular TH metabolism. We further show that Dio2 is a direct transcriptional target of FoxO1, and the FoxO1-Dio2 axis governs TH-induced hypertrophic growth of neonatal cardiomyocytes in vitro and in vivo. Utilizing transverse aortic constriction as a model of hemodynamic stress in wild-type and cardiomyocyte-restricted FoxO1 knockout mice, we unveil an essential role for the FoxO1-Dio2 axis in afterload-induced pathological cardiac remodeling and activation of TRα1. These findings demonstrate a previously unrecognized FoxO1-Dio2 signaling axis in stress-induced cardiomyocyte growth and remodeling and intracellular TH homeostasis.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , Yoduro Peroxidasa/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Hormonas Tiroideas/metabolismo , Animales , Animales Recién Nacidos , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Células Cultivadas , Proteína Forkhead Box O1/genética , Regulación de la Expresión Génica , Yoduro Peroxidasa/antagonistas & inhibidores , Yoduro Peroxidasa/genética , Ratones , Ratones Noqueados , Ratas , Transducción de Señal , Remodelación Ventricular , Yodotironina Deyodinasa Tipo II
8.
Cell Death Differ ; 27(9): 2586-2604, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152556

RESUMEN

Angiotensin-(1-9) is a peptide from the noncanonical renin-angiotensin system with anti-hypertrophic effects in cardiomyocytes via an unknown mechanism. In the present study we aimed to elucidate it, basing us initially on previous work from our group and colleagues who proved a relationship between disturbances in mitochondrial morphology and calcium handling, associated with the setting of cardiac hypertrophy. Our first finding was that angiotensin-(1-9) can induce mitochondrial fusion through DRP1 phosphorylation. Secondly, angiotensin-(1-9) blocked mitochondrial fission and intracellular calcium dysregulation in a model of norepinephrine-induced cardiomyocyte hypertrophy, preventing the activation of the calcineurin/NFAT signaling pathway. To further investigate angiotensin-(1-9) anti-hypertrophic mechanism, we performed RNA-seq studies, identifying the upregulation of miR-129 under angiotensin-(1-9) treatment. miR-129 decreased the transcript levels of the protein kinase A inhibitor (PKIA), resulting in the activation of the protein kinase A (PKA) signaling pathway. Finally, we showed that PKA activity is necessary for the effects of angiotensin-(1-9) over mitochondrial dynamics, calcium handling and its anti-hypertrophic effects.


Asunto(s)
Angiotensina I/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MicroARNs/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fragmentos de Péptidos/farmacología , Transducción de Señal , Animales , Animales Recién Nacidos , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citosol/metabolismo , Dinaminas/metabolismo , Hipertrofia , MicroARNs/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Miocitos Cardíacos/ultraestructura , Factores de Transcripción NFATC/metabolismo , Norepinefrina/farmacología , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
9.
Endocr Rev ; 41(3)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32179913

RESUMEN

Mitochondrial damage is implicated as a major contributing factor for a number of noncommunicable chronic diseases such as cardiovascular diseases, cancer, obesity, and insulin resistance/type 2 diabetes. Here, we discuss the role of mitochondria in maintaining cellular and whole-organism homeostasis, the mechanisms that promote mitochondrial dysfunction, and the role of this phenomenon in noncommunicable chronic diseases. We also review the state of the art regarding the preclinical evidence associated with the regulation of mitochondrial function and the development of current mitochondria-targeted therapeutics to treat noncommunicable chronic diseases. Finally, we give an integrated vision of how mitochondrial damage is implicated in these metabolic diseases.


Asunto(s)
Mitocondrias/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Enfermedad Crónica , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Humanos , Resistencia a la Insulina , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/fisiopatología , Mitocondrias/fisiología , Neoplasias/metabolismo , Neoplasias/fisiopatología , Obesidad/metabolismo , Obesidad/fisiopatología , Especies Reactivas de Oxígeno , Transducción de Señal , Respuesta de Proteína Desplegada
11.
Cell Death Differ ; 26(7): 1195-1212, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30209302

RESUMEN

Close contacts between endoplasmic reticulum and mitochondria enable reciprocal Ca2+ exchange, a key mechanism in the regulation of mitochondrial bioenergetics. During the early phase of endoplasmic reticulum stress, this inter-organellar communication increases as an adaptive mechanism to ensure cell survival. The signalling pathways governing this response, however, have not been characterized. Here we show that caveolin-1 localizes to the endoplasmic reticulum-mitochondria interface, where it impairs the remodelling of endoplasmic reticulum-mitochondria contacts, quenching Ca2+ transfer and rendering mitochondrial bioenergetics unresponsive to endoplasmic reticulum stress. Protein kinase A, in contrast, promotes endoplasmic reticulum and mitochondria remodelling and communication during endoplasmic reticulum stress to promote organelle dynamics and Ca2+ transfer as well as enhance mitochondrial bioenergetics during the adaptive response. Importantly, caveolin-1 expression reduces protein kinase A signalling, as evidenced by impaired phosphorylation and alterations in organelle distribution of the GTPase dynamin-related protein 1, thereby enhancing cell death in response to endoplasmic reticulum stress. In conclusion, caveolin-1 precludes stress-induced protein kinase A-dependent remodelling of endoplasmic reticulum-mitochondria communication.


Asunto(s)
Caveolina 1/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dinaminas/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Caveolina 1/genética , Muerte Celular , Células HeLa , Humanos , Transducción de Señal , Células Tumorales Cultivadas
12.
EMBO Rep ; 19(12)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30389725

RESUMEN

Increasing non-shivering thermogenesis (NST), which expends calories as heat rather than storing them as fat, is championed as an effective way to combat obesity and metabolic disease. Innate mechanisms constraining the capacity for NST present a fundamental limitation to this approach, yet are not well understood. Here, we provide evidence that Regulator of Calcineurin 1 (RCAN1), a feedback inhibitor of the calcium-activated protein phosphatase calcineurin (CN), acts to suppress two distinctly different mechanisms of non-shivering thermogenesis (NST): one involving the activation of UCP1 expression in white adipose tissue, the other mediated by sarcolipin (SLN) in skeletal muscle. UCP1 generates heat at the expense of reducing ATP production, whereas SLN increases ATP consumption to generate heat. Gene expression profiles demonstrate a high correlation between Rcan1 expression and metabolic syndrome. On an evolutionary timescale, in the context of limited food resources, systemic suppression of prolonged NST by RCAN1 might have been beneficial; however, in the face of caloric abundance, RCAN1-mediated suppression of these adaptive avenues of energy expenditure may now contribute to the growing epidemic of obesity.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo , Proteínas Musculares/metabolismo , Termogénesis , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Beige/efectos de los fármacos , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Adrenérgicos/farmacología , Animales , Calcineurina/metabolismo , Proteínas de Unión al Calcio , Diferenciación Celular/efectos de los fármacos , Frío , Femenino , Resistencia a la Insulina , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Masculino , Síndrome Metabólico/metabolismo , Metabolismo/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Obesidad/metabolismo , Obesidad/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Regiones Promotoras Genéticas/genética , Proteolípidos/genética , Proteolípidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Termogénesis/efectos de los fármacos , Proteína Desacopladora 1/metabolismo
13.
Pharmacol Res ; 135: 112-121, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30048754

RESUMEN

Angiotensin-(19), a peptide of the non-classical renin angiotensin system, has been shown to prevent and revert hypertension and cardiac hypertrophy. We hypothetized that systemic delivery of angiotensin-(1-9) following myocardial infarction will also be protective and extend to provide protection during reperfusion of the ischemic heart. Adult Sprague Dawley rats were subjected to left anterior descending artery ligation and treated with angiotensin-(1-9) via osmotic mini-pump for 2 weeks in the presence or absence of Mas receptor or AT2R antagonists (A779 and PD123319, respectively). Myocardial death and left ventricular function were evaluated after infarction. Infarct size and functional parameters were determined in isolated rat hearts after global ischemia/reperfusion in the presence of angiotensin-(1-9) plus receptor antagonists or Akt inhibitor at reperfusion. in vitro, neonatal rat ventricular cardiomyocytes underwent simulated ischemia/reperfusion and angiotensin-(1-9) was co-incubated with A779, PD123319 or Akt inhibitor. Systemic delivery of angiotensin-(1-9) significantly decreased cell death and improved left ventricular recovery after in vivo myocardial infarction. Perfusion with the peptide reduced the infarct size and improved functional recovery after ex vivo ischemia/reperfusion. In vitro, angiotensin-(1-9) decreased cell death in isolated neonatal rat ventricular cardiomyocytes subjected to simulated ischemia/reperfusion. The cardioprotective effects of angiotensin-(1-9) were blocked by PD123319 and Akti VIII but not by A779. Angiotensin-(1-9) limits reperfusion-induced cell death by an AT2R- and Aktdependent mechanism. Angiotensin-(1-9) is a novel strategy to protect against cardiac ischemia/reperfusion injury.


Asunto(s)
Angiotensina I/uso terapéutico , Cardiotónicos/uso terapéutico , Daño por Reperfusión Miocárdica/prevención & control , Fragmentos de Péptidos/uso terapéutico , Angiotensina I/farmacología , Animales , Animales Recién Nacidos , Cardiotónicos/farmacología , Células Cultivadas , Corazón/efectos de los fármacos , Corazón/fisiología , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 2/metabolismo
14.
Circulation ; 138(20): 2247-2262, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29853517

RESUMEN

BACKGROUND: Cardiac dysfunction is a major component of sepsis-induced multiorgan failure in critical care units. Changes in cardiac autophagy and its role during sepsis pathogenesis have not been clearly defined. Targeted autophagy-based therapeutic approaches for sepsis are not yet developed. METHODS: Beclin-1-dependent autophagy in the heart during sepsis and the potential therapeutic benefit of targeting this pathway were investigated in a mouse model of lipopolysaccharide (LPS)-induced sepsis. RESULTS: LPS induced a dose-dependent increase in autophagy at low doses, followed by a decline that was in conjunction with mammalian target of rapamycin activation at high doses. Cardiac-specific overexpression of Beclin-1 promoted autophagy, suppressed mammalian target of rapamycin signaling, improved cardiac function, and alleviated inflammation and fibrosis after LPS challenge. Haplosufficiency for beclin 1 resulted in opposite effects. Beclin-1 also protected mitochondria, reduced the release of mitochondrial danger-associated molecular patterns, and promoted mitophagy via PTEN-induced putative kinase 1-Parkin but not adaptor proteins in response to LPS. Injection of a cell-permeable Tat-Beclin-1 peptide to activate autophagy improved cardiac function, attenuated inflammation, and rescued the phenotypes caused by beclin 1 deficiency in LPS-challenged mice. CONCLUSIONS: These results suggest that Beclin-1 protects the heart during sepsis and that the targeted induction of Beclin-1 signaling may have important therapeutic potential.


Asunto(s)
Autofagia , Beclina-1/metabolismo , Sepsis/patología , Animales , Autofagia/efectos de los fármacos , Modelos Animales de Enfermedad , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Miocardio/metabolismo , Miocardio/patología , Fosfohidrolasa PTEN/metabolismo , Sepsis/etiología , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
15.
Circ Res ; 122(6): e20-e33, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29362227

RESUMEN

RATIONALE: The regulator of calcineurin 1 (RCAN1) inhibits CN (calcineurin), a Ca2+-activated protein phosphatase important in cardiac remodeling. In humans, RCAN1 is located on chromosome 21 in proximity to the Down syndrome critical region. The hearts and brains of Rcan1 KO mice are more susceptible to damage from ischemia/reperfusion (I/R); however, the underlying cause is not known. OBJECTIVE: Mitochondria are key mediators of I/R damage. The goal of these studies was to determine the impact of RCAN1 on mitochondrial dynamics and function. METHODS AND RESULTS: Using both neonatal and isolated adult cardiomyocytes, we show that, when RCAN1 is depleted, the mitochondrial network is more fragmented because of increased CN-dependent activation of the fission protein, DRP1 (dynamin-1-like). Mitochondria in RCAN1-depleted cardiomyocytes have reduced membrane potential, O2 consumption, and generation of reactive oxygen species, as well as a reduced capacity for mitochondrial Ca2+ uptake. RCAN1-depleted cardiomyocytes were more sensitive to I/R; however, pharmacological inhibition of CN, DRP1, or CAPN (calpains; Ca2+-activated proteases) restored protection, suggesting that in the absence of RCAN1, CAPN-mediated damage after I/R is greater because of a decrease in the capacity of mitochondria to buffer cytoplasmic Ca2+. Increasing RCAN1 levels by adenoviral infection was sufficient to enhance fusion and confer protection from I/R. To examine the impact of more modest, and biologically relevant, increases in RCAN1, we compared the mitochondrial network in induced pluripotent stem cells derived from individuals with Down syndrome to that of isogenic, disomic controls. Mitochondria were more fused, and O2 consumption was greater in the trisomic induced pluripotent stem cells; however, coupling efficiency and metabolic flexibility were compromised compared with disomic induced pluripotent stem cells. Depletion of RCAN1 from trisomic induced pluripotent stem cells was sufficient to normalize mitochondrial dynamics and function. CONCLUSIONS: RCAN1 helps maintain a more interconnected mitochondrial network, and maintaining appropriate RCAN1 levels is important to human health and disease.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Mitocondrias Cardíacas/metabolismo , Dinámicas Mitocondriales , Proteínas Musculares/genética , Daño por Reperfusión Miocárdica/genética , Animales , Proteínas de Unión al Calcio , Calpaína/genética , Calpaína/metabolismo , Línea Celular , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/metabolismo , Oxígeno/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Adv Exp Med Biol ; 982: 277-306, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28551793

RESUMEN

The heart must function continuously as it is responsible for both supplying oxygen and nutrients throughout the entire body, as well as for the transport of waste products to excretory organs. When facing either a physiological or pathological increase in cardiac demand, the heart undergoes structural and functional remodeling as a means of adapting to increased workload. These adaptive responses can include changes in gene expression, protein composition, and structure of sub-cellular organelles involved in energy production and metabolism. Mitochondria are essential for cardiac function, as they supply the ATP necessary to support continuous cycles of contraction and relaxation. In addition, mitochondria carry out other important processes, including synthesis of essential cellular components, calcium buffering, and initiation of cell death signals. Not surprisingly, mitochondrial dysfunction has been linked to several cardiovascular disorders, including hypertension, cardiac hypertrophy, ischemia/reperfusion and heart failure. The present chapter will discuss how changes in mitochondrial cristae structure, fusion/fission dynamics, fatty acid oxidation, ATP production, and the generation of reactive oxygen species might impact cardiac structure and function, particularly in the context of pathological hypertrophy and fibrotic response. In addition, the mechanistic role of mitochondria in autophagy and programmed cell death of cardiomyocytes will be addressed. Here we will also review strategies to improve mitochondrial function and discuss their cardioprotective potential.


Asunto(s)
Cardiopatías/metabolismo , Mitocondrias Cardíacas/metabolismo , Dinámicas Mitocondriales , Miocitos Cardíacos/metabolismo , Transducción de Señal , Remodelación Ventricular , Animales , Metabolismo Energético , Fibrosis , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Mitocondrias Cardíacas/patología , Mitofagia , Contracción Miocárdica , Miocitos Cardíacos/patología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
17.
J Mol Cell Cardiol ; 103: 121-136, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28007541

RESUMEN

The calcium-activated protein phosphatase, calcineurin, lies at the intersection of protein phosphorylation and calcium signaling cascades, where it provides an essential nodal point for coordination between these two fundamental modes of intracellular communication. In excitatory cells, such as neurons and cardiomyocytes, that experience rapid and frequent changes in cytoplasmic calcium, calcineurin protein levels are exceptionally high, suggesting that these cells require high levels of calcineurin activity. Yet, it is widely recognized that excessive activation of calcineurin in the heart contributes to pathological hypertrophic remodeling and the progression to failure. How does a calcium activated enzyme function in the calcium-rich environment of the continuously contracting heart without pathological consequences? This review will discuss the wide range of calcineurin substrates relevant to cardiovascular health and the mechanisms calcineurin uses to find and act on appropriate substrates in the appropriate location while potentially avoiding others. Fundamental differences in calcineurin signaling in neonatal verses adult cardiomyocytes will be addressed as well as the importance of maintaining heterogeneity in calcineurin activity across the myocardium. Finally, we will discuss how circadian oscillations in calcineurin activity may facilitate integration with other essential but conflicting processes, allowing a healthy heart to reap the benefits of calcineurin signaling while avoiding the detrimental consequences of sustained calcineurin activity that can culminate in heart failure.


Asunto(s)
Calcineurina/genética , Calcineurina/metabolismo , Corazón/fisiología , Miocardio/metabolismo , Transducción de Señal , Animales , Calcineurina/química , Inhibidores de la Calcineurina , Proteínas Portadoras/metabolismo , Activación Enzimática , Regulación de la Expresión Génica , Corazón/efectos de los fármacos , Humanos , Mecanotransducción Celular , Miocitos Cardíacos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato , Factores de Transcripción/metabolismo
18.
Sci Rep ; 6: 36394, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27808250

RESUMEN

Efficient mitochondrial Ca2+ uptake takes place at contact points between the ER and mitochondria, and represents a key regulator of many cell functions. In a previous study with HeLa cells, we showed that ER-to-mitochondria Ca2+ transfer increases during the early phase of ER stress induced by tunicamycin as an adaptive response to stimulate mitochondrial bioenergetics. It remains unknown whether other types of stress signals trigger similar responses. Here we observed that rapamycin, which inhibits the nutrient-sensing complex mTORC1, increased ER-mitochondria coupling in HeLa cells to a similar extent as did tunicamycin. Interestingly, although global responses to both stressors were comparable, there were notable differences in the spatial distribution of such changes. While tunicamycin increased organelle proximity primarily in the perinuclear region, rapamycin increased organelle contacts throughout the entire cell. These differences were paralleled by dissimilar alterations in the distribution of regulatory proteins of the ER-mitochondria interface, heterogeneities in mitochondrial Ca2+ uptake, and the formation of domains within the mitochondrial network with varying mitochondrial transmembrane potential. Collectively, these data suggest that while increasing ER-mitochondria coupling appears to represent a general response to cell stress, the intracellular distribution of the associated responses needs to be tailored to meet specific cellular requirements.


Asunto(s)
Retículo Endoplásmico/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Sirolimus/farmacología , Tunicamicina/farmacología , Calcio/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo
19.
Sci Signal ; 9(422): ra34, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27048565

RESUMEN

Altering chromatin structure through histone posttranslational modifications has emerged as a key driver of transcriptional responses in cells. Modulation of these transcriptional responses by pharmacological inhibition of class I histone deacetylases (HDACs), a group of chromatin remodeling enzymes, has been successful in blocking the growth of some cancer cell types. These inhibitors also attenuate the pathogenesis of pathological cardiac remodeling by blunting and even reversing pathological hypertrophy. The mechanistic target of rapamycin (mTOR) is a critical sensor and regulator of cell growth that, as part of mTOR complex 1 (mTORC1), drives changes in protein synthesis and metabolism in both pathological and physiological hypertrophy. We demonstrated through pharmacological and genetic methods that inhibition of class I HDACs suppressed pathological cardiac hypertrophy through inhibition of mTOR activity. Mice genetically silenced for HDAC1 and HDAC2 had a reduced hypertrophic response to thoracic aortic constriction (TAC) and showed reduced mTOR activity. We determined that the abundance of tuberous sclerosis complex 2 (TSC2), an mTOR inhibitor, was increased through a transcriptional mechanism in cardiomyocytes when class I HDACs were inhibited. In neonatal rat cardiomyocytes, loss of TSC2 abolished HDAC-dependent inhibition of mTOR activity, and increased expression of TSC2 was sufficient to reduce hypertrophy in response to phenylephrine. These findings point to mTOR and TSC2-dependent control of mTOR as critical components of the mechanism by which HDAC inhibitors blunt pathological cardiac growth. These results also suggest a strategy to modulate mTOR activity and facilitate the translational exploitation of HDAC inhibitors in heart disease.


Asunto(s)
Cardiomegalia/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Cardiomegalia/genética , Línea Celular , Células Cultivadas , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Péptidos Cíclicos/farmacología , Interferencia de ARN , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
20.
J Investig Med ; 64(1): 50-62, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26755814

RESUMEN

Adipose-derived stem cells (ADSCs) have myocardial regeneration potential, and transplantation of these cells following myocardial infarction (MI) in animal models leads to modest improvements in cardiac function. We hypothesized that pharmacological priming of pre-transplanted ADSCs would further improve left ventricular functional recovery after MI. We previously identified a compound from a family of 3,5-disubstituted isoxazoles, ISX1, capable of activating an Nkx2-5-driven promoter construct. Here, using ADSCs, we found that ISX1 (20 mM, 4 days) triggered a robust, dose-dependent, fourfold increase in Nkx2-5 expression, an early marker of cardiac myocyte differentiation and increased ADSC viability in vitro. Co-culturing neonatal cardiomyocytes with ISX1-treated ADSCs increased early and late cardiac gene expression. Whereas ISX1 promoted ADSC differentiation toward a cardiogenic lineage, it did not elicit their complete differentiation or their differentiation into mature adipocytes, osteoblasts, or chondrocytes, suggesting that re-programming is cardiomyocyte specific. Cardiac transplantation of ADSCs improved left ventricular functional recovery following MI, a response which was significantly augmented by transplantation of ISX1- pretreated cells. Moreover, ISX1-treated and transplanted ADSCs engrafted and were detectable in the myocardium 3 weeks following MI, albeit at relatively small numbers. ISX1 treatment increased histone acetyltransferase (HAT) activity in ADSCs, which was associated with histone 3 and histone 4 acetylation. Finally, hearts transplanted with ISX1-treated ADSCs manifested significant increases in neovascularization, which may account for the improved cardiac function. These findings suggest that a strategy of drug-facilitated initiation of myocyte differentiation enhances exogenously transplanted ADSC persistence in vivo, and consequent tissue neovascularization, to improve cardiac function.


Asunto(s)
Tejido Adiposo/citología , Miocardio/patología , Trasplante de Células Madre , Células Madre/citología , Cicatrización de Heridas , Acetilación/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Condrogénesis/efectos de los fármacos , Condrogénesis/genética , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Técnicas de Cocultivo , Femenino , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Proteína Homeótica Nkx-2.5/metabolismo , Isoxazoles/farmacología , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Neovascularización Fisiológica/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...